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1. Introduction.

Let X, Y be Banach spaces and A C R' a bounded interval. Let F: A x X -. Y be a smooth

operator. The nonlinear equation

(1.1) F(A,u) = 0,

with parameters A E A is called parametrized nonlinear equations.

Let (A, u) E A x X be a solution of (1.1). Intuitively, the set of the solutions of (1.1) would

form n-dimensional hypercurves in the Banach space R' x X. If D,,F(A, u) E C(X, Y), the

Frlchet derivative of F with respect to u, is an isomorphism, then, by the implicit function

theorem, the above intuition is correct, i.e. there exists a locally unique branch of solutions

around (A, u), and the branch is parametrized by A. Such branches on which D,,F(A,,u) is

isomorphism at each (A, u) are called regular branches.

However, if DUF(A, u) is not an isomorphism, the state of equilibrium defined by (1.1)

becomes unstable and the behavior of the solutions is unpredictable; the hypercurve of the

solutions might be a fold, or there might be several hypercurves of solutions intersecting at that

point. The folding points are called turning points. The points at which the hypercurves of

solutions are intersecting are called bifurcation points. (Note that the definition of bifurcation

points given by some authors includes turning points.)

In this paper we deal with the parametrized nonlinear equation F : A x H'(J) - H-'(J)

with one parameter A E A defined by

(1.2) F(A, u) = O, (A, u) E A x Hl(J),

(1.3) < F(A, u), v >:= I[a(Az,u'(z))v'+ f(A, x,u(z))vldz, Yv E H•(J),

where J := (b, c) C R is a bounded interval, and a, f : A x J x R -- R are sufficiently smooth

functions. Since F is a second order differential operator in divergence form, finite element

solutions of (1.2) are defined in a natural way.

Brezzi, Rappaz, and Raviart [BBR1-3] presented a comprehensive work on the numerical

analysis of parametrized nonlinear equations. They first proved an extended implicit function

theorem with error estimates on Banach spaces. Then, using the implicit function theorem.

they obtained several results of a priori error estimates of finite element solutions (BRRI,2]. In

[BRR3], they considered approximation of solution branches around bifurcation points, which

will not be dealt with in this paper.
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Following [BRRI-3], Fink and Rheinboldt released several papers about numerical analysis

of parametrized nonlinear equations ([FRI,2], [R], and references therein). While the formulation

of [.BRR1-31 was rather restrictive, Fink and Rheinboldt developed their theory of a priori error

estimates of numerical solutions in a very general setting using the theory of differential geometry.

Fink and Rheinboldt employed the theory of Fredholm operators. Let X and Y be

Banach spaces and F : X -. Y a differentiable mapping. Then, F is called Fredholm on an

open set U C X if the Frichet derivative DF(z) satisfies the following conditions at any Z E U:

(1) dimKerDF is finite,

(2) ImDF is closed,

(3) dimCokerDF is finite.

We must note that, in the above prior works by Brezzi, et al. and Fink-Rheinboldt, only

mildly nonlinear equations were considered. If a(A, x,y) in (1.3) is nonlinear with respect to

y, the operator F is called strongly nonlinear (quasilinear), otherwise it is called mildly

nonlinear (semilinear).

Following the above prior works, we here develop a thorough theory of a priori and a

posteriori error estimates of finite element solutions of (1.2) on regular branches and on branches

around turning points in the case that the number of parameters is one, that is, A C R. Since

our formulation of parametrized nonlinear equations includes strongly nonliear equations, our

theory is an essential extension of the prior works.

In this paper we present the theory of a priori error estimates. In [TBI] the theory of a

posteriori error estimates and several numerical examples will be given. In the following the

outline of this paper is described.

First, we show that the exact and finite element solutions of (1.2) form one-dimensional

smooth manifolds. If F is mildly nonlinear, showing that solutions form manifolds would not

be very difficult. If F is strongly nonlinear, however, it would become very difficult, or F would

not be even differentiable in A x Hi(J).

Therefore, we redefine (1.2) and (1.3) using the Sobolev space W"'¶(J). Then, F becomes

as smooth as the functions a and f, and it is a Fredholm operator in a certain open set. From the

Fink-Rheinboldt theory, we conclude that the exact and finite element solutions form smooth

manifolds under suitable conditions.

Next, we prove several a priori estimates of finite element solution manifolds of (1.2) using the
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extended implicit function theorem due to Brezzi, Rappaz, and Raviart [BRRI]. As mentioned

before, we need to take the Sobolev space Wl'°(J) as the stage of the error analysis of finite

element solution manifolds. However, using W",00(J) in the formulation make the finite element

analysis difficult. So we have to come up with several new tricks to overcome this difficulty. The

following is the most essential trick:

Since our operator F is defined on WI,"(J), its Fr~chet derivative D.F is a linear operator

on W"¶00(J). However, D,,F can be extended to an element of C(HO, H-') and thus the usual

theory of finite element can be applied to DuF.

Another new idea is 'rotation' or 'pivoting' of the coordinate to handle turning points. In

[BRR2], a slightly different formulation from that of [BRRI] was used to deal with turning

points. In Fink-Rheinboldt's theory, certain isomorphisms were introduced in the formulation

so that both regular branches and branches around turning points were treated simultaneously.

In this paper, we put an auxiliary equation in the original equation (1.2) so that the enlarged

operator is an isomorphism between Banach spaces around turning points or on *steep slope'.

Then we do the same thing what we do on regular branches to the extended operator.

In this paper one-dimensional case is discussed. Under certain assumptions the results

obtained here will be extended to two-dimensional case in [TB2].

This paper is a revision of a part of one of the authors' Ph.D. dissertation IT].

2. Preliminary.

In this section we prepare notation and a necessary lemma.

Let J := (b,c) C R be a bounded interval. For a positive integer m and a real p E [I, 0],

we denote by W'P,(J) the usual LP-Sobolev space of order m, that is,

W m,(J) {u E LP(J) IDku E LP(J),0 < k < m

We define the norm of W m .P(J) by

IIUllw'., := E IID'UIll,.,
k=O

For p E (1, ool, we define the closed subspace Wý' (J) by

W1' (J) := { E W',P(J) ju = 0 on 8}J

As usual, we denote W- 2(J) and W0 ' (J) by Hm (J) and H'(J), respectively.
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Note that COOO(J), the set of infinitely many times differentiable functions with compact

supports, is dense in Wl'*(J) for p, I < p < oo, but if p = oo, CO'(J) is not dense in W"'°"(J).

By the Poincar6 inequality, the norm

(2.1) II-4jW., := IIU'IILP

is equivalent to the norm 11 IIw,., in WO"P(J). We always take the norm (2.1) for WO'P(J) in

this paper.

For 1 < q < cc and p with 1 + 1, let W-",P(J) be the dual space of Wl'"(J) with the

norm

IIFIIw-,., : sup I p< F, x >q 1, F E W-'1P(J),
IIXIIw.I.9=1

where p< .,. >9 is the duality paring between W-",P(J) and WOfr9(J). Then we have

Lemma 2.1. For any F E W-' 1P(J) with I < p <_ co, there exists a unique u E Wl"P(J)

so that

p< F, v >q= uV'dx, Vv E W0,(j). 3

Lemma 2.1 is a direct consequence of [B, Proposition VIII.13].

In notation of this paper, we omit '(J)' from the notation of Sobolev spaces when there is

no danger of confusion. Also, we write < .,. > instead of p <,. >q when the setting of the

duality paring is obvious.

Subscripts like a. and f,% stand for partial derivatives with respect to x and A, respectively.

3. Formulation of the Problem.

In this section we formulate our problem rigorously. To do this we define the nonlinear operator

F: Ax W"' -- W-W1 , by, for A E A cR and u EW"00

(3.1) < F(A,u),v >:= I[a(Azu'(z))v'(z)+ f(A,z,u(z))v(z)]dx, Vv EWO

where < - > is the duality pairing between W- 1"' and W01'1 .

For F being well-defined and smooth we require several conditions for a and f.

A function 0 : A x J x R - R is called Carathodory continuous if ip sitisfies the

following conditions: for (A,z,y) E A x J x R,
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{ ((A, x, y) is continuous with respect to A and y for almost all z,

?P(A, z,y) is Lebesgue measurable with respect to z for all A and y.

If i(A, z,y) is Carathiodory continuous, O(A, z,u(x)) is Lebesgue measurable with respect

to x for any Lebesgue measurable function u.

Let a - (1, a2) be usual multiple index with respect to A and y. That is, for V = (al, a2),

Da(A, z,y) means NO, jYa2

Let d > I be an integer. For o, Jul < d, we define the maps A'(A,u) and F0 (A,u) for
(A, u) e A x W'0 b

(3.2) A'(,,u)(x) =D~a(•,\x,u'(x)),

(3.3) F*(A,u)(z) D'f(A,x,u(z)).

We then assume that

Assumption 3.1. For all a, lal < d, we suppose that

(1) For almost all z E J, D~a(A, z, y) and DOf(A, z, y) exist at all (A, y) E A x R, and they are

Carathgodory continuous.

(2) The mapping A*' defined by (3.2) is a continuous operator from A x W0'00 to L', and the

image pA(U) C L' of any bounded subset U C A x Wo " is bounded.

(3) The mapping F* defined by (3.3) is a continuous operator from A x W0110 to LV. and the

image F*(U) C L1 of any bounded subset U C A x W•'° is bounded. 0

Assumption 3.1 is satisfied if a, f : A x J x R -- R are, for instance, Cd functions. By simple

computation we obtain the following Lemma.

Lemma 3.2. Suppose that a and f satisfy Assumption 3.1. Then F defined by (3.1) is a

C' mapping. Its Fr~chet derivatives are written as

< D.,F(A, u)t, ,v > = L[a,(A, z, u'(z)),P'v' + fy(A, z, u(z)) v dx

< D.F(A,u)i7,v > = 1I 7L[a(A,z,u '(z))v' +f(Axu(x))vIdx,

for 0 E W0o , v E WlO, and 17 E R. Moreover, we have the following estimates

IID.F(A, u)IlC(w,.ow-,.j) _< ilay(A, z, u'(z))IILa + Ilfs,(A, x, u(X))IIL,,

liDAF(A,u)Ilwi..oo < IlaA(A,z,u'(X))IIL- + ilA(A,x,z(•))tILI,.
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Now, we define our problem.

Problem 3.3. Under Assumption 3.1 with d >- 1, solve the following equation: Find A E A

and u E W1 such that
< F(A, u), v >= 0, Vv E W"0',

where F is defined by (3.1). 3

4. Fredholm Operator and the Solution Manifold.

In this section we prove that, if a(A, x, y) satisfies certain conditions, F will be a nonlinear

Fredholm operator and solutions of Problem 3.3 form a one-dimensional differential manifold.

The following lemmas are essential.

Let p E (1, oo] and a E L'. Define A: W'" -- W-1,P by

(4.1) < Au, v >:= j a(x)u'(z)v'(x)dx, Vv E W0'",

where ý + - = 1, and <, > is the duality pairing between W 1-P and W'q. Then we have

Lemma 4.1. Suppose a- 1 E L- and I - 6# 0. Then A is an isomorphism between

W"• and W-1,P.

Proof. First, we prove that A is onto. Let co := .-" Take an arbitrary F E V-'P. By

Lemma 2.1 we know that there exists a unique 0 E W10 'P such that

< F, v >= / '(x)v'(x)dx, Vv E 0

Let cl := - dx and u(z) := [ 0'(t) + C, dt. Then it follows that u E Wo'p, and
co fi a(X) lb a(t)

<Au,v >=< Fv> for allv E W . Hence, A is onto.

Next, we show that A is one-to-one. Suppose that Ul, u2 E W0'P and

/ a(x)u'(z)v'(x)dx = ]a(z)u2(x)v'(x)dx, Vv E W1 l4 ,q

By [B,LemmaVIII.1.], there is a constant c2 such that a(x)(u'(x) - u'(X)) - c2 for almost all

z E J. Since

- (U'(z) - u =(C))dx = c2 - -- COC2,
2 fJja(x)
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and co 6 0, we conclude that ut(x) = ut(x) and ul = u,. That is, A is one-to-one.

Since A is continuous and bijective, A-' is also bounded by the closed graph theorem.

Therefore, A is an isomorphism between W"'P and W- 1 ,P. 0

Lemma 4.2. Suppose that a-1 E LOO and ±-- = 0. Then

(1) dim KerA = 1 and KerA = {fo E Wo"'Pij'(X) = coa(z)-', co E R},

(2) ImA C W-1'P is closed,

(3) dim CokerA = 1.

r dt
Proof. (1) Let p(z) :- a-(t) Then, by the assumption, we have o E Wo C Wof, and

<Aw,v >= 0 for all v E Wlq. Therefore, V E KerA.

Conversely, for any u E KerA, there is a constant co such that oa(a)u'(a) = co for almost all

X E J. This implies that u = co0 . Hence, (1) is proved.

(2) First, we define the subset X C WP'p by

X {4 E 0' 'T !Ldx = 01

Clearly, X is a closed subspace of W0'1.

Let T E Z(Wo'P, W-I'P) be the isomorphism defined by < Tu, v >:= j u'v'dx, Vv E W011

Let X :- T(X). Take any 0' E X, and define u(x) := J V t. Then, we have u E W0 p, and

< Au, v >=< TO, v >, for all v E W0lq . Hence, we have that ImA D X.

Now, take any 77 E W0JP and define -f by y(z) := j (a(t)17'(t) - cl)dt, where c:

I ai7'dx/IJI. We check that -Y E Wo and Ty = Ai7. Moreover, we have -Y E X because

7 z) d = 77'(x)dx - ci !1d =0.

Sa:z) jLv ~ z

Hence, we conclude that ImA = XC and ImA is closed.

(3) As before, define Oo E W"'P by 00o(z) : ce(t)-fdt. Since (o,/ra)dx = a-2dxz

0, we have 00 f X. Let c2 I La2dx > 0. Take any 4 E Wo'" and let c-3

Then 4' - (c 3 /c2)*o E X because

4i'(X) - (C3/c2)o(X) dx L '(x) d -LI dxSa(x) jac) C2 j a(z)2

This implies that for any 0 E Wo'P there exist c4 E R and 0i E X such that 0 = c4 O0 + W1.

The uniqueness of such decomposition is obtained by a simple computation.



Therefore, we showed that W- 1P = ImA E span{Thbo}, and (3) is proved. 3

From Lemma 4.1 and Lemma 4.2 and the definition of Fredholm operators, we finally obtain

Theorem 4.3. If a-' E L', then the linear operator A defined by (4.1) is a Fredholm

operator and indA, the index of A, is 0. 0

Let us now return to our main problem. We define the subset S C A x W×' by

(4.2) S:= {(A,u) E A x W0'1I a,(A,x,u'(Z))-' E L'}.

Since the mapping A x W0
1 " 9 (A,u) ~-- ay(A, X, u'(X)) E L' is continuous, we have

Lemma 4.4. If a and f satisfy Assumption 3.1 with d > 1, S is an open set in A x W"

0

Now, from the standard theory of Fredholm operators, we obtain the following theorem:

Theorem 4.5. Suppose that a and f satisfy Assumption 3.1 with d> 1. Then in S, the

operator F : S -. W- 1 ,' defined by (3.1) is a nonlinear Fredholm operator of index I.

Proof. From Lemma 3.2 and Theorem 4.3, the operator DuF(A, u) : W'" - W- 1', is Fred-

holm and its index is 0 for (A, u) E S. Since DF(A,,u) : R x N - W-'," is written as

DF(A,u)(i, ,) = DF(A,u)?k + iD.F(A,u) for 77 E R and ? E W01, Theorem 4.5 is con-

cluded. 0

We define the subset JZ(F, S) C S by

(4.3) IZ(F,S) := {(A, u) E S1 DF(A, u) is onto).

and have

Lemma 4.6. For any (A, u) E IZ(F,S), dim KerD.F(A,u) is at most 1.

Proof. Assume that N := dim KerD.F(A, u) > 2 for some (A,u) E I(F,S). Note that the

elements of KerDF(A, u) are solutions of the linearized equation

(4.4) DF(A, u)(p, 0) = UDAF(A, u) + D.F(A, u)7p = o, u E R, ?k EW"'

9



If D.F(A, u) 0 ImD.,F(A, u), by (4.4), we obtain

KerDF(A,u) = {(0,0) E Ax W0'Th 0 E KerDuF(A,u)}

and dim KerDF(A, u) = N > 1. This contradicts to (4.3) and indF=1.

Therefore, we should conclude that DAF(A, u) E ImDF(A, u). Let ?o E W01" be such that

DAk(A, u) = DF(A, u)bo. Then we obtain

(4.5) KerDF(A, u)= -js¢ + 4') E Ax WO"'° i E R, 4 E KerDuF(A, u)},

and hence dim KerDF(A, u) = N + i > 1. Therefore, we get a contradiction again, and

Lemma 4.6 is proved. 03

The elements of 1Z(F, S) are called regular points. The elements of F(1Z(F, S)) are called

regular values.

By Theorem 4.5, we can apply the Fink-Rheinboldt theory ([FR1],[FR2],[R]) to the operator

F and obtain the main theorem of this section.

Theorem 4.7. Suppose that a and f satisfy Assumption 3.1 with d > 1. Let

e E F(IZ(F,S)). Then

M = M. := {(A, u) E JZ(F,S) I F(A,u) = e}

is a one-dimensional Cd-manifold without boundary. Moreover, for each (A, u) E ", the tangent

space T(x,,,)M at (A,u) is KerDF(A,u).

Therefore, if 0 E F(R(FS)), the solutions of Problem 3.3 form a one-dimensional Cd-

manifold without boundary in 1(F,S). 3

In the sequel of this paper we always assume that 0 E F(1Z(F,S)).

Now, let us consider the linearized equation (4.4). From Lemma 4.6, we would have four

cases for (A, u) E RZ(F,S).

Case 1. KerD,,F(A,u) = {0} and DAF(A,u) E ImD,.F(A,u).

In this case, by the implicit function theorem, there exists a unique Cd map A 9 A '- u(A) E

WO,'10 such that F(A, u(A)) = 0 for any A. Hence, this case corresponds to regular branches.

0

Case 2. dim KerD,,F(,\,u) = 1 and DAF(A,,u) 0 ImD,,F(A,u).

10



In Case 2, using the well-known Liapunov-Schmidt reduction (see, for instance, [GS]),

we can show that this case corresponds to (general) turning points. 0

Case 3. KerD,,F(A,u) = {O} and DAF(A,u) 0 ImD,,F(A,u).

By a similar argument to the proof of Lemma 4.6, we see that this case cannot happen. 0

Case 4. dim KerD,,F(A, u) = 1 and DAF(A, u) E ImDuF(A, u).

By (4.5), we have dimKerDF(A, u) = 2 and dimCokerDF(A, u) = 1. Hence, this is not the

case for (A, u) E J(F, S). In this case we may have a bifurcation phenomenon. 03

By the above consideration we now know that

(A,u) E 1Z(F,S) 4 (A,u) E S and DF(A,u) E C(R x W W 1,-) is onto,

Swe have either Case 1 or Case 2.

5. Regularity of Solutions.

In this section we examine the regularity of the solutions (A, u) E M 0 . To do it we need

additional assumptions. Let p, 2 < ps < oo be taken and fixed.

Assumption 5.1. Under Assumption 3.1 with d > 1, we assume that

(1) For all A E A, the functions a(A,-, .), a,(A,., .) : J x R -, R are continuous.

(2) For al (A, y) E A x R, there exist a.(A, x, y) for almost all z E J and are Carathdodory

continuous.

(3) The composition functions f(A, z, u(x)), a.(A, z, u'(z)) are in LP* for any (A, u) E A x w0o'".

Moreover, for any bounded subsets K C A x "oo ,

{f(A,z,u(z)) E LPI (A,u) E K}, {a.(A,z, u'(z)) E LP*[ (A,u) E K}

are bounded in LP. 0

Lemma 5.2. Let (A,u) E Mo. Suppose that Assumption 3.1 and 5.1 hold. Then u E

CI(j).

Proof. Define fo by fo(z) := -f(A, z,u(z)). By Assumption 5.1(3), we have fo E LP. Now,

consider the following equation

(5.1) j (x)v'(z)dz= fO(z)v(z)dz, Vv E H'0*



There exists a unique solution t E W 2 ''p of (5.1). Thus, we have

(5.2) a(A, x, u'(x)) = H(x) E W'P*,

where H(z) := '(z) + cl with some constant cl.

Now, for a fixed A E A, define the function G : J x R -- R by G(z, y) a(A, z, y) - H(z).

Note that G,(z,y) = a,(A,z,y) and, by Assumption 5.1(1), G and G. are continuous. Also

we remark that, for almost all z0 E J and yo := u'(zo), we have G(zo, yo) = a(A, Xo, u'(xo)) -

H(zo) = 0 and ay(A, xo, yo) = ay(A, o, u'(zo)) # 0 because (A, u) E M CS and (4.2).

Therefore, by the implicit function theorem, we conclude that, in the each neighborhood of

xo, there exists a unique continuous function T such that T(zo) = u'(zo) and

G(z,T(x)) = a(A, x,T(z)) - H(z) = 0.

This means that T(z) = u'(x). Hence, u'(z) is continuous for all z E 1. 0

The following is the main theorem of this section.

Theorem 5.3. Under Assumption 3.1 and 5.1, we have u E W2,P" for all (P, u) E Mo.

Moreover, for all bounded closed subsets A C Mo, there exists a constant K(Mý) such that

sup llulW2,,,- _< K(M4).

Proof. Let H E W'"P be defined by (5.2). For small 6 > 0 we write

H(z + 6)- H(z) = ay(A, +6, u'(z + 6) + (u'(z + 6) -u'(x))) u'(x + 6)- U'(x)
6 6

a(A, z + 6, u'(x)) - a(A, z, u'(z))
+6

with 0 < c < I. Since H E W 1 'P*, H' exists at almost all z E J and H' E L". From

(A, u) E Mo C S, it follows that a(A, z + 6, u'(z + 6))-1 E L-, that is,

Ia(A,z+6,u'(x+6))l -y >0 for any z+6 E J.

By Lemma 5.2, we have u'(z + 6) -- u'(x) as 6 -- 0. Hence we obtain

(5.3) Ia,(A, x + 6, u'(z + 6) + c(u'(x + 6) - u'(z)))l > 0

for all z E J and sufficiently small 6 > 0, and

(5.4) lim ay(A, z + 6, u'(z + 6) + c(u'(z + 6) - u'(z))) = a,(A, z, u'(z))
6-0
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because of Assumption 5.1(1). By (5.3), (5.4) and Assumption 5.1(2), we conclude that ,for

almost all z E J, lim(u'(z + 6) - u'(z))/6 exists and
6-0

(5.5) u"(z) = lim u'(z + 6) - u'(z) _ H'(z) - a,(A, x, u'(x))

6-0 6 a1,(A, x, u'(z))

Since H', a.(A, z, u'(z)) E LP', we obtain u" E LP" and u E W 2 "p'.

Now, let A C Mo be a bounded closed subset. Then, we have

(5.6) sup{lla,(A,Z,u'(z))-1 IIL-o;(A,u) E .M} < oo.

The last part of Lemma 5.3 is obtained by (5.5), (5.6), and Assumption 5.1(3). 0

6. Finite Element Solution Manifold.

Recall that we are considering

Problem 6.1. Find A E A and u E W '00 such that

(6.1) < F(A,u),v >= 0, Vv W•' 1 . 0

Naturally, we define the finite element solution of (6.1) in the following way. Let Sh C

Wo" C W0f' be a finite element space. The space of piecewise linear functions is an example

of Sh. We define the finite element solutions of Problem 6.1 by

Problem 6.1FE. Find Ah E A and Uh E Sh such that

< F(Ah, uh), vh >= 0, VVh E Sh. 0

Then, using the Fink and Rheinboldt theory, we will show that the solutions of Prob-

lem 6 .IFE also form a differential manifold.

Let (., .) be the inner product of Hal defined by (u, v) : u'v'dz for u, v E Ho1. Since

5h C Ho0, we define the canonical projection IIh: Hol -- S, by (7P - lIh?,Vh) = 0, Vvh E Sh for

We see the following equivalences. Define an isomorphism T E £(W-l',', W0
1`0) by <

77, v >= (TM, v), Vv E W01" for 77 E W-','. Then, we observe that, for any Vh E Sh and v E H"1,

(6.2) < F(Ah,uh),Vh >=0 4=- < F(Ah,,uh),HhV >= 0

€=€ (TF(Ah,,uh),IIhv) = 0

S((IIhTF(AAh, Uh), v) = 0

<T-13IhTF(At,uh),v>=0.

13



Since H' is dense in W"'j, we conclude that Problem 6 .1FE is equivalent to

0

Problem 6 1FE. Find Ah E A and uh E 5h such that

< Fh(Ah, Uh), v >= 0, Vv E W01,

where Ph := T-1fhT E C(W- 1',°, W-"',) and Fh(Ah, Uh) := PhF(Ah, uh). 03

Our formulation of Problem 6 .1'E seems to depend on T and IIh. However, we claim that,

even if we take other Ta, R' and define the finite element solutions by < T-,I T0,F(A•h, Uh), V >

=0 for all v E W.- 1, this formulation is equivalent to Problem 6 .1FE.

Let a E LOO be such that a(z) >2 > 0 for all z E J, where E is a constant. Let (.,.), be

the inner product of H0l defined by (u, v), :=L 1Cu'v'dz for u, v E Hol. Define the isomorphism

TW E C(W",,W 0
1'0) by < ?I, v >= (T7,rv)a, Vv E WJo' 1 for 17 E W-"',0. Also, define the

0 0

canonical projection 1' : Hl -- Sh by ( I - IhI, vh). = 0, VVh E S% for 0 E H'1. By the same

manner as in (6.2), we observe that, for any Vh E %h and any v E H0l,

< F(Ah,,uh),vh >= 0 4==•< TIH*T0 F(Ah,vh),v >= 0.

Therefore, with the definition Ph* :- T'II•T, we conclude that

(6.3) Ph F(Ai,, uh) = 0 t=-, P~h F(Ah, uh) = 0.

Hence, our claim is demonstrated.

We will see that these observation is very important fc-: our a-priori error estimates because

(6.3) guarantees that we can take any a E L' (that is, (T,, HI)) such that or > c > 0 in our

error analysis.

In the statement of Problem 6 .1*E, we defined F, : A x 5 h -- W-"',. Following the

Fink-Rheinboldt theory we extend Fh to A x W1 . Define 7h : A x W - W 1 ,• by

:Fh(A, u) := (I - P• )T-'u + Ph F(A, u),

where I is the identity of W-',".

Lemma 6.2 ([R,Lemma 5.1]). The operator 7h satisfies the following:

(1) r(A,u) =0 for some (A,u) E A x H if and only if(A,u) E A x and F,(A,,u) =0.

(2) rh is a Fredholm operator of index I on A x Hoo. 0

14



By Lemma 6.2, we have the following theorem as a consequence of the Fink-Rheinboldt

theory.

Theorem 6.3. Suppose that F is Cd mapping (d > 1). Then the set of the finite elements

solutions of Problem 6. FE',

{I : (At,,U%) E 1I.(Fh,4A x H01)) jFI,(Ah,4ut,) =0

is a C" manifold without boundary. 3

7. A Priori Error Estimates of the FE Solution Manifold.

Part 1: Regular Branches.

We are ready to start to consider a priori error estimates of the FE solution manifold M4h. In

the consideration of error estimates, we always assume the following.

Assumption 7.1. We assume that

(1) Assumption 3.1 with d (i.e. F is a C' Fredholm map).

(2) 0 E F(IR(F, S)) (i.e. Mo $ 0).

(3) Assumption 5.1 (i.e. u E W 2 ,p, 2 < p" <_ oo for any (A, u) E Mo).

(4) Sph is regular and lim inf Ilu - vhJ,4x = 0, for any u E HoI.
h-0 E

(5) The triangulation of S,4 (in one dimensional case, the partition of J into small intervals)

satisfies the inverse assumption [C,pl40]. a

In the sequel, we denote by "h : W"'1 -" % the interpolant projection. We also denote by

C or Ci, i is non-negative integers, generic constants which are independent of h > 0.

The main tool of our a priori error estimates is the following implicit function theorem due

to Brezzi, Rappaz, and Raviart (BRRI,Theorem 1].

Theorem 7.2. Let X, Y and Z be Banach spaces. Let S C X and y : S - Y a function

defined in S. Let f be a C1 mapping defined in a neighborhood of S x y(S). Suppose that the

function S 3 z i-- y(z) E Y satisfies the uniform Lipschitz condition; there exists a constant C"

such that

Ily(z) - y( _<)Iy : Coilj - Z'llx, Vx,x E S.
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Suppose in addition that the following hypotheses hold:

(i) for all zo E S, Dyf(xo, y(xo)) is an isomorphism of Y onto Z with

sup Jj(Dsf(xo,y(zo)))-F11C(zy) _ C1,
zoOES

(ii) we have

sup IID.f(xo, y(xo))II,(x,z) _< C2,
zoES

and there exists a monotonically increasing function L, : R+ -- R+ such that for all zo E S and

all (z, y) E Bl((zo, y(xo)))

IlDf(x, y) - Dfo(o, y(xo))IL(xxyz) < Lj(ý)(Jjx - xollx + Ily - y(zo)lly).

Then, one can find three constants a, b, d > 0 depending only on C0 , C1, C2 and L1 such that,

under the condition

sup jIf(zo,y(xo))llz < d,
Z0oES

There exists a unique C' function g: U B.(zo) - Y which satisfies
ZO ES

f(z,g(z)) = 0,

and maps B.(zo) into Bb(y(so)) for xo E S. Moreover, we have for all x0 E S and all E 8a.(o)

llg(x) - y(xo)ll.y < Ko(ll. - zolIx + llf(xo, y(xo))Ilz),

where the constant Ko > 0 depends only on C1, C2 . 0

Our first main theorem is as follows.

Theorem 7.3. Suppose that Assumption 7.1 holds for d > 2. Also suppose that, at

(Ao, uo) E Mo, D.F(Ao, uo) E C(Wo'-, W-"',) is an isomorphism.

Then, for sufficiently small h > 0, there are a positive c.% > 0, a constant b(A0) > 0, and a

unique C 2 map (Ao- EA0,A0 + E(.%] 9 A •- fih(A) E Sh such that

(7.1) Fh((A, ih(A)) = 0,

(7.2) IIih(A) - Inhu(A,)IlH, 5 <b(Ao)h ,

for any 77 with 0 < t1 < .

Moreover, we have for some constant K(Ao) > 0

(7.3) 1I6h(A) - u(A)IIH. _< K(Ao)llu(A) - fihu(A)IIH.

Here, the constants b(Ao) and K(Ao) are independent of h and A E [(o - E1e, 10 + IEAo].
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Proof. Since the proof is somewhat long, we divide it into several steps.

Step 1. It follows from Lemma 3.2 that, for (A,u) E MO, DF(A,u) E £(R x H•,H-1)

and
SA x W O'" 3 (A,u) .. D F(A,u) E C(R x H d,H -1) is

( Lipschitz continuous on bounded subset.

We, moreover, claim that, if D,F(A, u) E C(V"'°, W-1,-) is an isomorphism for (A, u) E S,

D.F(A, u) is an isomorphism of Hl to H-1 as well.

Define Q, R E C(H0',/H-1) by

2< QO ,v >2:= 1ja(z)V'v'd", 2< RP,v >2:= LI (x)1Pvdx, V?,b,v EI/d,

where a(z) := a(A, xz, u'(z)) and 6(z) :-f/y(A, z, u(z)).

By Theorem 4.3, Q is a Fredholm operator of index 0 and R is compact. Hence, DuF(A, u) =

Q + R 6 C(H', H- 1) is a Fredholm operator of index 0. Therefore, if KerD F(A. u) C HO' is

trivial, D. F(A,u) E C(H 1, H-1) is an isomorphism.

Let 0' E H be such that D.F(A,u)¢t = 0. This means that -(a(z)p')' + 3(x)i = 0

in the distributional sense. Since 6 E L1 , we conclude 7P E W2' 1 by a standard regular-

ity argument. Hence, lk E W"'f and 0 = D.F(A, u)4i E W- 1'°". Since we assumed that

D,F(A, u) e L(WO'1, W- 1'°) is an isomorphism, we obtain •' = 0. Therefore, our claim is

proved. o

Step 2. We prepare inequalities which we will use later. By Assumption 7.1(5) we have

the inverse inequality [C,Theorem 3.2.6],

I6(7.5) llvt'jW~i. 5, . C'h- j ,5 ClltjhlIa <_ h3h-(•+")llvhlH,,, v, 6 Sh,

for any 17> 0.

Since D,.F(Ao, uo) E C(Wo'°, W-"'¶) is an isomorphism, we conclude by the implicit func-

tion theorem that there exist e1 > 0 and a unique C2 map

(Ao - ,E, AO + el) B A i- u(A) E W61"

such that u0 = u(',o) and F(A, u(A)) = 0. Thus, it follows that

(7.6) lljhu(A&) - fIhu(A)IlH. _ C41A - Al,

for all A,A* E (Ao - il,Ao + el). In (7.6) we used the fact that suplIll4Hi Q•1,H1) < o (see e.g.
h>0

[C,Theorem 3.1.6]).
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By Theorem 5.3 we know that u(A) E W2,P" and

(7.7) C5 :sup {Ilu(A)IIw 2.,,.; A E [Ao - 2-, Ao +

Thus, by [C,Theorem 3.1.6], we see

(7.8) llu(A) - fthu(A)Ilw. .. < CChh-1,.

Let ao(z) := a(Ao, x,uio(z)). Since a(Ao, z,uxo(z))- 1 E LOO ((AO, uo) E Mo C S), uo E

W2 P C C'[o, 1], and Assumption 5.1(1), we can assume without loss of generality that

(7.9) ay(Ao, z, u(z)) > 3 6o > 0.

Then, we define the bilinear form A : HO x H.x -- R by

A(u, v) :=/ ao(z)u'v'dz, Vu,v E H'.

Also, we define the canonical projection II°: Hol --. Sby
0

(7.10) A(u - 1l0u, v1) = 0, Vvh ESh,

for u E H•. Then, it follows from Assumption 7.1(4) and (7.9) that

(7.11) lim llu - Il01,[XH = 0, Vu E HO.h-0-O

Now, define To: H- 1 - Hol by

2< 0, V >2= Lao(z)(To1)'v'dz, Vv E H0,

for 4, E H- 1, and define r : A x Wo W 1 ,0 by

Fh(A, u) (I - P•o)To'u + PtOF(A, u),

where I is the identity map of WOlf and =T7oII°To E h (W-'a, W-'¶.

Note that, by Lemma 6.2, r(A, u) = 0 if and only if (A, u) E Mh.

By the definition of II and P1', we immediately get

(7.12) C6 := sup IIlP214H-,,H-,) < 00.
h>0

It follows from (7.7), (7.12), and [C,Theorem3.1.6] that

(7.13) IIJ1(A, fl,,u(A))lH-, < C6IF(A, u,(A)) - F(A, fIhu(A))lIH-,

< C6  I'll.ll(H.,,-,)dt, Il1u(A) - fthu(A)IIHll(101
C 'h, VAE[A 0 I-, O+-],

2 2
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where 'Pt := D.F(A, (I - t)u(A) + tfthu(A)) E C(Ho, H-'). Therefore, we obtain

(7.14) lim sup h-(h2i")II-T~j(A, Ithu(A))IIH-1; A E [Ao - ' ~.A+ 6] <lim C 7 hi 2 =0,
h-0 2 2 J h-0

for any 77,0< < 7.7

Step 3. We claim that there exist a positive E2 > 0 and a constant C3 > 0 independent of

h > 0 and A E (A0 - E2, Ao + e2] with

(7.15) IID,,T'(A, Ihu(A))vhIIH-1 > C8IlVhllHj, VVh E sh*

First, we note that, by (7.4) and Step 1, the mapping

(A0 - el,A 0 + el) a A .- (D.F(A, u(A)))-1 E C(H1-, HI)

is continuous. Thus, we set

W := max , II(DF(A,u(A)))-'IL(Hl-aH).

Next, we write

(7.16) D.TPh(A,•hu(A))vh =D.F(A,u(,))V

+P P(D.F(A, flhu(A)) - D.F(A, u(A)))vh

-( I - PIh)(-To1 + D.F(Ao, uo))v•e

+(I - P•o)(D,F(Ao, uo) - DF(A, u(A)))v•".

Let us examine the each term of (7.16). On (a), we immediately see

(7.17a) IID.F(A, u(A))VhllH-, -> W1-Xllqhll,.

On (b), it follows from (7.4), (7.8), and (7.12) that

(7.17b) Ie,. (D.F(A, flIu(A)) - D.F(A, u(A)))VhIIH-l

< CgfllhIu(A) - u(A)llw,.-.IvhljHz < CC5Cqh -•IIVhlHl-

On (c), we remind that

2< (-ToT + D,,F(Ao, uo))Vk, v >2= I fj,(Ao, z, uo(z))ikvdz,

and -To1 + D.FiAo, uo) E C(Hl, H-') is compact. Therefore, we conclude that

(7.17c) lim II(1- l)(-TY' + D.F(Ao, uo))IIC(nrn-,) = 0
h-0
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because of (7.11).

On (d) we observe the following. By (7.4) there exists a constant CI0 such that

JIDF()\*, u()\*)) - D,,F()\, u(A))llz(Ho ,H-') < Ci01oA - \•.

Take E2 > 0 so that c- 1 > 2wCIo suplI- P2I1gH-1,H-1). Then we have
h>o

(7.17d) I1(I - Pto,)(D rF(Ao,uo) - D,.F( .\,u(A)))lz(HI ,H-) 2-

for any A E [Ao - C2 , AO + e'2].

From (7.16) and (7.17), we obtain

IID~TFh(A, Ithu(A\))vhIIH_., > (ýL - 6(h)) IIVhIIH.1,

with lim 6(h) = 0. Therefore, we prove the claim (7.15) for sufficiently small h. o
-- 0

Step 4 Again, we prepare a few inequalities. It follows from (7.8) that

(7.18) IIDA1rh(A, fU(A))IIH-_ -6 (o1DAF(A,u(A))IIH-1 + C1Ih1-,J') < C12,

for all A E (Ao - A, A0 + '] and h > 0.

By (7.4) and (7.12) we have

IIDF0(A", v;) - D-Fo(A, Ifthu(A))llIcI.xH,H-')

<_ CIA3(IA - Al + IIv; - 11hu(A)IllWg.-), Vv,, E S,

where C13 = C13(IAI, [A*l, llvllwIi.-) is independent of h. Hence, by (7.5), there exists a

monotonically increasing function LI : R+ -. R+ independent of h such that, for all A, A' E

[Ao - -, Ao + .] and all v; E Sh with

h-(I+")(IA" - Al + Ilv; - fthu(A)IIHI) __ <, 0 < 7 <
0 2

we have

(7.19) IIDT(A', v;) - DrF,(A, thu(A))ll•mxHJH-,)

-< Al•h(••(•.-• + Ijvý - fthU(A)llHOI). 0

Step 5 This is the final stage of the proof. By (7.6), (7.14), (7.15), (7.18) and (7.19) we

can apply Theorem 7.2 to the operator r, in the following situation;
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X = R with norm h-"IAI,

Y = Sh C HO with norm h-"lvhIIH.,

Z = Sh C H'- with norm h- [ITjlvhIIH-1,

S = [Ao - e.,Ao + E.%] with eA: min(' 62),

y(A) = fhu(A),
where -f + q for any j7, 0 < 17 < y. Since IAhjIjj(Xxyz) = IiAht1C(.xHjH-,) for all

Ai, E Q(R x Sh, Sh) and (7.14), there exist a constant b(Ao) > 0 independent of h and a unique
0

C2 function [Ao - eA0, Ao + EA.] 9 A - fsi(A) E Sh such that

(7.20) Th(A, fih(A)) = 0 and IIllhu(A) - ih(A)Ily _< b(Ao),

and the inequality

(7.21) Iiih(A) - fIhu(A)IIHj < C14j1rh(A, fhu(A))IIH-,

holds for all A E [A0 - cAO,Ao + EA.]. From Lemma 6.2, we get (7.1) and (7.2) immediately from

(7.20). Combining (7.13) and (7.21), we obtain (7.3) and complete the proof of Theorem 7.3. 03

Corollary 7.4. Suppose that the assumptions of Theorem 7.3 hold. Then, there exists a

constant KI(Ao) > 0 independent of h > 0 and A E [Ao - eA., Ao + EA.I such that

(7.22) IIu(A) - fsh(A)Ijw,.. <5 KI(Ao)h', 0 < 77 <

for any A E (Ao - Exo, Ao + ex.] and sufficiently small h > 0.

Proof. By (7.2) and the inverse inequality [C,Theorem 3.2.6], we have

1[fih(A) - fIhU(A)Ilwi.1- < b(Ao)h",

for all A E [Ao - ec.1, Ao + e~,]. It follows from (7.8) that

Iu(A) - fih(A)Ijwi,. <5 11u(A) - fItU(A)I1w..o + 11fih(A) - fthu(A)iIw•,-

< CCsah'- + b(Ao)h" < 3K,(Ao)h". 0

Theorem 7.5. Suppose that Assumption 7.1 holds for d _> 2. Also, suppose that Ao C

Mo is a compact regular branch, that is, there is a compact interval A C A and C2 map

A-3 A P- u(A) E Wo'° such that

Ao = {(A, u(A)) E Mo I D,,F(A, u(A)) is an isomorphism for VA E A}.
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Then, for sufficiently small h > 0, there exists the corresponding finite element solution

branch 3h C Mh which is parametrized by the same A E A and

(7.23) IIfhu(A) - Uh(A)IIHL < Koh 21

(7.24) Ilu(A) - Uh(A)IIHZ < K1g1u(A) - hu(A)IIHI,

(7.25) 11u(A) - Uh( A)•)WI,o < K 2h'V

for all A E A, u(A) E M4o, uh(A) E M4h, and q7 with 0 < 17 < -1. Here, Ko, K 1 ,K 2 > 0 are

constants independent of h and A.

Moreover, we have

(7.26) , C JZ(F, S).

Proof. From Theorem 7.3 and Corollary 7.4, (7.23), (7.24), and (7.25) are obtained imme-

diately.

To show (7.26) we just have to realize that D,F(A,u(A)) E C(W"'0, W-'--) is an isomor-

phism for each A E A and

D,,F( ,\, Uh(),)) = D,,F(),\, u(X))) + Bh,

where Bh := DF(A, uh(A)) - DF(A, u(A)) and IIBhiLJ(w•.oO,W-l..) - 0 as h - 0 because of

(7.25). 0

Remark 7.6. We can rewrite (7.23) and (7.25) as

IIfhu(A) - uh(A)llgi < Koh'-', Ilu(A) - uh(A)llW.i.. < K2h ,

where e > 0 is an any small number. In linear cases, with certain assumptions of regularity of

solutions, we would have error estimates like

IIIhu - UhIIHi < Ch2, 11U - uhIIw•, _< Ch.

It is not very clear whether or not the convergence rates of (7.23) and (7.25) are optimal.

We might be able to improve the convergence rates with further assumptions for the regularity

of solutions (Assumption 5.1 might not be enough to improve (7.23) and (7.25)). 0

For i1 •[w,,.-estimate, we have the following. Suppose that we have

(7.27) lim IIu - nIllw•.- = o, vu E -w ,
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where II° E C(1oI'', WI ý) is defined by (7.10). For example, we can show that (7.27) is true

for piecewise linear elements.

Theorem 7.7. Suppose that assumptions of Theorem 7.5 and (7.27) hold. Then, for suf-

ficiently small h > 0, for the corresponding finite element solution branch ,Mh C Ah, we have

the following estimates:

IIllhu(A) - uh(A)IIwiPo < Koh+,

I1u(A) - uh(A)Ilw.,p. < KrIIu(A) - Ilhu(A)IVw.,-,
IHu(A) - uh(A)IIwa.o :< K2h'7,

for all A E A, u(A) E Mo, uh(A) E MýIh, and q with 0 < 77 < I - ..
p

8. A Priori Error Estimates of the FE Solution Manifold.

Part 2: Ar~ound Turning Points.

Let us consider a priori error estimates around turning points and/or on 'steep slopes'. Basic

idea is as follows: just rotate the coordinate '90-degrees' and do the exactly same thing as in

Section 7.

Recall that by the argument in Section 4 we know that we have either Case 1 or Case 2 for

(A,u) E Mo C JR(F,S);

Case 1: KerD,,F(A,u) = {0} and DF(A,u) E ImD,,F(A,u).

Case 2: dimKerD,.F(A, u) = I and DF(A, u) ý ImDF(A, u).

Suppose that y E R and zo E J are given in a certain way and fixed. Define G : Z( F, 3) -

R x W-l',' by

G(A, u) := (u(zo) - y, F(A, u))

for (A, u) E R(F, S). Then, we have

(8.1) DG(A, u)(p, 0) = (O(zo),MuDF(A, u) + DF(A, u) ?P),

for A E R and 0 E W" First, we prepare the following lemma.

Lemma 8.1. Let (A,u) E 7R(F,S) and (go, 0o) the basis of KerDF(A,u). Suppose that

D.F(A,u) i 0. Then, we have II*olco > 0. Moreover, with Zo E J such that 1'o(xo) # 0.

DG(A,u) is an isomorphism ofR x WO, to R x W-1 '- for any -y E R.
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Proof. Suppose that we are in Case 1. It follows from DAF(A,,u) # 0 that

*;1 :.= -D,,F(A,,u)-'(DAF(A, u)) 0 0.

Thus, the basis of KerDF(A,u) should be written as (go,0goto). Hence, we obtain 1o7 -

l ,oIII¢ Ic0 > o.

Suppose that we are in Case 2. Let *o E Wo'1 be such that KerD,,F(A, u) = span{f o}.

Then, (0, Vo) is the basis of KerDF(A, u) and the first part of Lemma 8.1 is trivial in this case.

Now, let us consider DG(A, u). Let (V), ¢) E KerDG(A, u), and xo E J such that ?I(zo) - 0.

Then, there exists 6 E R such that (/M, i) = 6 (jj, ?Po). Thus, it follows from (8.1) and 4'O(zo) : 0

that (ij, 0) = (0, 0). Hence, DG(A, u) is one-to-one.

Let (z,<O) be any element of R x W-1'-. Since DF(A,u) is onto, there exists (p,6) E

R x W.1'00 such that 0' = DF(A, u)(p, 0). Hence, we obtain (z, 4D) = DG(A, u)((p, €)+ 6(go, ?ýo)),

where 6 := (z - 0(xo))/*o(xo). Therefore, we have showed that DG(A, u) is onto and an

isomorphism. 03

From Lemma 8.1, we immediately obtain the following corollary.

Corollary 8.2. Let (A,u) E JR(F,S). Suppose that DAF(A,u) 0 0. Then, for sufficiently

small h > 0, there exists a nodal point zo E J Of Sh such that DG(A,u) is an isomorphism. 0

Remark 8.3. In Lemma 8.2 we showed that we always can choose a nodal point of Sh so

that DG(A,u) is an isomorphism if DAF(A, u) 6 0. For example, if a nodal point xo E J is

taken so that *o(zo) is nearly equal to 1iPo01co, then DG(A, u) is an isomorphism.

Indeed, the manner of PITCON of choosing the continuation index is consistent to the

above fact. After getting a point (Ah, uh) E Mh, PITCON computes the tangent vector

th = (Y0,...,Yk) E T(AA,Ah)Mh of the solution manifold Mh (remember that KerDFh(Ah,uh) =

T(Ah,,w)Mh). Then, the continuation index i, is taken so that Ili = I1thIk.• In our case,
a

(Yo, ... , Yh) is like (,sOh,liOh(z1), ... , 9Oh(Xk)), where Zx, ... ,Xk are nodal points of 5h, (4soh, WVoh) is

the basis of KerDFh(Ah, uh), and yi, = IPoh(xo). (See [R] for the detail.) Thus. for sufficiently

small h > 0, kioh(zo)I would be very close to I1iko11co, and Vo(xo) is not zero.

Hence, in practical computation, we may expect that PITCON takes the right nodal point

xo, and DG(A,u) E C(R x W" R x W- 1 ,') is an isomorphism. 03
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Suppose that DAF(A, u) 6 0 at (A, u) E Mo. To 'rotate' the coordinate we define the

operator H : R x S - R x W-',- by

H(y, A, u) := (u(xo) - -, F(A, u)), 7 E R, (A, u) E S,

where xo E J is taken so that D(A,U)H(y(, A, u) = DG(A,u) E C(R x W0 ,R x W 1 ,) is an

isomorphism.

Note that

(8.2) DH(y, A, u)(s, t, ') = (-s + *(xo), DF(A, u)(t, ?P))

for (s,t) E R2 and 0 E W0
1 '. Also, note that, by the implicit function theorem, for each

(A,u) E Mo such that DjF(A,u) 6 0, there exist eo > 0 and a unique C' map (u(xo) -

Eo, U(zo) +,Eo) 9 y '* (A(y),u(Y)) E M'o such that (A,u) = (A(yo),u(yo)) with -o := u(xo), and

H(y, A(y), u(yv)) = (0, 0), that is, F(A(y), u(y)) = 0 and u(y)(xo) = Yo for any -/.

Suppose that DAF(Ao, uo) A 0 at (Ao, uo) E Mo. Then by Corollary 8.2 there exists a nodal

point zo E J of Sh such that D(A,,)H(-y, Ao, uo) = DG(Ao, uo) is an isomorphism of R x W01

to R x W-1,00 for sufficiently small h > 0.

Theorem 8.4. Suppose that Assumption 7.1 holds for d > 2. Let DxF(Ao, uo) # 0 at

(Ao, uo) E Mo. We assume without loss of generality that there exists Zo E J such that ro is a

nodal point of Sh for all sufficiently small h > 0 and D(c,u)H(y, Ao, uo) is an isomorphism.

Then, there exist a positive Eo > 0, constants b(Ao, uo), k(Ao, uo) > 0, and a unique C2 map

[uo(zo) - Eo, uo(zo) + eo] I v- (Ah(7), fih(Y)) E A x Sh such that

(8.3) Fh(Ah(-Y), uh(Y)) = 0,

(8.4) j&(-v) - A(/)I + 1liih(7) - lthU(-Y)IIH, _< b(Ao, uo)h 4 +",

(8.5) IAh(l) - A(y)l + 1liih() - U(-()IIHI1 __ K(Ao, uo)11u(-y) - flhU(Y)IIH-,

for any 77 with 0 < 77 < fl. The constants b(Ao, uo) and K(Ao, uo) are independent of h and

-YE [uo(xo) - co, uo(zo) + co].

Proof. The manner of the proof is exactly same to that of Theorem 7.3. We divide the proof

into several steps.

Step 1. It follows from Lemma 3.2 and (8.2) that DH(y, A,u) E C(R2 x Hd,R x H-1)

and {. R x Ax xWo'3 (-,A,u) i.- DH(-y,A,u) E C(R2 x Ho,R x H-1) is
Lipschitz continuous on bounded subset.
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We, moreover, claim that, if DAF(A, u) $ 0 and D(•,,)H(y, A, u) E C(R x W0J'0, R x W-1,-)

is an isomorphism at (-y, A, u) E R x 1Z(F, S), D(AN,,)H(-y, A, u) is an isomorphism of R x H01 to

R x H- 1 as well.

Let H D(A,u)H(y, A, u) E C(R x Hl, R x H-1 ). Then

H(A, i) = (?P(xo), DF(A, u)(jL, V))), j E R, * E Ho.

We have to consider two cases.

Suppose that we are in Case 1, that is, DuF(A, u) E £(W0
1 ', W-1'" ) is an isomorphism. In

this case, from the argument of Step 1 of Theorem 7.3, we know that D"F(A, u) E £(H1, H-')

is an isomorphism. Thus, we can prove our claim by the exactly same manner of the proof of

Lemma 8.1.

Next, suppose that we are in Case 2, that is, dim KerQ = 1 and R 0 ImQ, where Q

D,.F(A, u) E £(Wo'-, W- 1',) and R:= DF(A, u). To avoid confusion we denote DuF(A, u) E

C(H01, H-1) by Q.

We first show that KerQ = KerQ. Obviously, we have KerQ C KerQ. Let ?P E KerQ C H0.

Then, we have

2<Q?,V >2= J (x)iPY'v'+ 3(z)pv]dx = 0, Vv EH,

where a(z) := a(A, x, u'(z)) and O(z) := fy(A, z, u(x)). Hence, by a simple computation, we

conclude that P E W 2,P" n H1 C W10. Hence, KerQ = KerQ. By Theorem 4.3, we know that

indQ = 0. Thus, we obtain dim CokerQ = 1.

Next, we want to show that DAF(A,u) 0 Im). If DIF(A,u) E ImQ, there exists some

Vhi E H' such that

,r(x)iP'v'dx = 2< DXF(Au),v >2 ,.(x)Vlvdx, Vv E H.

Again, by a simple computation, we conclude that •i is in the domain of Q. This is a contra-

diction because we assumed D)F(A, u) 0 ImQ.

Since we showed that dim KerQ = I and D.F(A,u) 0 ImQ, we can prove our claim in the

same way as in the proof of Lemma 8.1. o

Step 2. We prepare several inequalities which we use later.

By the implicit function theorem, there exist c, and a unique map

(Uo(Xo) - i, uo(zo) +,Ei) • - (A(-),u(-y)) E A x W"'
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such that (Ao, uo) = (A(-yo), u(-yo)) with Yo.:-= U0(zo), u(.Y)(zo) = -y, and F(A(-y), u(-Y)) = 0.

As in Step 2 of the proof of Theorem 7.3, we easily obtain the following inequalities.

(8.7) IA(7°) - A(7)1 + IfIfhu(7) - fthU(()IIHl <_ Cl517" - 71, V-y, y E II,

where I, := [uo(zo) - -, uo(xo) + ].

Let ao(z) := a(Ao, z, u,(z)). Again, we can assume without loss of generality that

a(.Ao, x, u,(z)) > 36o > 0.

Then, we define the canonical projection 110 : Ho -- Sh, the isomorphism To E £(H-1, Hl0),

-2 ._, w
and the C2 map Fh A x W"00 as in Step 2 of the proof of Theorem 7.3. Of course,

we have (7.11) and (7.12).

Now, define i : R x S - R x W-1," by

(8.8) Tfh(-y, A,u) := (u(xo) - -, T(A, u)), YE R,(A,u) E S.

As in Step 2 of the proof of Theorem 7.3, we observe

lH-'h()', A00), Ilhu(Y))IImxH-1 - Ifuh('Y)(zo) - -yl + IIFh(A(Y), lIhU("Y))IIH-I

< C16h, V-YE II.

Thus, we conclude that, for any 77 with 0 < 17 <

(8.9) lim supfh-(=+')lih(-y, A(-0), .hu(-y))il-xH-1 I -.

Step 3. We claim that there exist a positive E2 > 0 and a constant C17 independent of

h > 0 and 7 E [Uo(zo) - E2 , Uo(zo) + 621 such that

0(8.10) JID(x.%,.) (-f, A(7•), fIT(M))(U, V'h)JJ•xf-I >- C17(1AI + JI•,hJJ/H), E R, •VVh E Sh.

First, we remark that, by (8.6) and Step 1, the mapping

(uo(zo) - el, uo(zo) + el) 9 3'. (D(p,,)H(7, A(y), u(y')))-' E •C(R x H-', R x Hoi)

is continuous. Thus, we set

w :=max II(D()H(-y, A(-y), u(Y)))-'IIC(XHIxHI)7
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Next, we write

(8.11) D(A,u)7ih(-y, A(-y), IlhU(-Y))(W ,Vh)=(vh(XO), DF(A(-y), u(ýy))(s, ,vh))

+(O, (DTFh(A(-y), Ithu(-y)) - DF(A(-y), u(-y)))(p, Vh)).

On the first term of right-hand side of (8.11), we have

(8.12) II(Vh(zo), DF(A(-y), uOy)(iA, Vh))IIMH-I >_ W-(I~l + IIVhIIH0).

On the second term of right-side of (8.11), we write

(8.13) (Drh(A(-y), fthU(y)) - DF(A(yj),u(_Y)))(p, Vh)

=-.u(I - Pho)Dx F(A(-y), u(-y))("

+p.Ph0(DAF(A('y), IthU(Y/)) - DxF(A(-v), u(,Y)))' )

+Ph0(DuF(A(-y), Ithu(-y)) - DuF(\(-y), u(-y)))v(c

-(I1 Ph2)(-Tj1' + Dt&F(Ao, uo))v"')

+(I - Pho)(DuF(Ao, uo) - DFA-) (/)v"

Let us check each term of (8.13). On (a), we have

(8.14a) IIA(I -P10)DxF(A(-y), u(_))IIH-I <,E(h)Iu.I,

with Uim c(h) = 0 because 11(1 - FhO)DAF(A(-y), U(Y))11 11-, -* 0 as h - 0 uniformly with respect
h-0

to -y on I,= [uo(xo) - ý-, uo(xa) +

On (b), we easily obtain

(8.14b) II/APh0(DAF(A(-y), fthU(y)) - DAF(A(-y),U(-Y)))IIH-1 < Cish pwi

On (c) and (d), we immediately get (see Step 3 of the proof of Theorem 7.3)

(8.14c) IIPh0(D,.F(A(-y), Ithu(-Y) - DuF(A(-y), U('Y)))VhIIH-1 < Cjgh1_ LIIVhIlHi.

(8-14d) lim 11(I - Pho)(-TJ1' + DuhF(Ao, uo))IIAC(Ha1H-1) = 0.h-0

On (e), by (8.6), there exists a constant C20 such that

IID.F(A(-y), u(y)) - DuF(A(-y), U(_Y))IIC(Hi ,H-1~) :< C2017 - ýI

for any Y,-Y*y E 11. Take C2 >O0so that c2 I > 2wC2 o sup III - Ph0II~C(H--,H-'). Then, we have
hi>0

(8.14e) I1(I - Ph)(D. F(Ao, tso) - DuF(A(-y), U('Y)))I!.C(H-- H-') :5 2
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for any y E [Uo(Zo) - 62, Uo(zo) + E21.

From (8.12) and (8.14), we obtain

JID(.%,)j(-y, A(-y), I hU(-Y))(/A, Vh)IIR H- >•- 6(h))(Itl~ + IIVhIIH),

with lim 6(h) = 0. Therefore, we prove the claim (8.10) for sufficiently small h > 0. o
hJ-0

Step 4. Again, we prepare a few inequalities. By (8.8), we see

(8.15) IIDi(H-,h(y ),I,1U(Y))IIEXH-1 = II(-1,O)ItmXH-, = 1.

Also, we immediately obtain

(8.16) IID A*(,, u• ) - D (-y, A(y), Ithu(Y))IIC(3 xHXH,RxH-H)

_< C.21(ly" - -'1 + JA' - A(-y)l + II"u - IlhU('Y)IIlw•.• ).

where C21 = C21(I•yI, JIX, IIJI"llJu1w...).

Thus, by the inverse inequality (7.5) and (8.16), there exists a monotonically increasing

function L2 : R+ - R+ independent of h such that, for all y, y" E [Uo(zo) - ,uo(Xo)+ + 1,
0

A* E A and v; E Sh with

h-(i+")(17"* - 71 + 1A" - A(7)1 + Ilv; - hu('Y)IIHOI) < C, 0 < 77 < 21

we have

(8.17) IIDi(7",A',u*)- Djh(,A(-),Ithu(7))Ilc(22XHI•-H.x_)

< ()h-(1+")(l-f - I1 + IA" - A(y)1 + IIv; - f,1u(0)IIH, ). 0

Step 5. By (8.7), (8.9), (8.10), (8.15) and (8.17), we can apply Theorem 7.2 to the operator

770 in the following situation;

X = R with norm h-xl[I,

Y = R x S, C R x H/o with norm h-x(IAI + IIvhIHJ,,),

Z = R x S% C R x H- 1 with norm h-X(IAI + IITolVhIIH-l),

S = [uo(zo) - o, uo(Zo) + col with to := min( C2),

Y(O) = (W(-Y), IIu(y)),

where X = + ½+ for any 17, 0 < j7 <
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Since IIAhLC(xxYz) = IIAhIIc(12xH•,JxH-') for all Ah E C(R2 x S%,R x Sh) and (8.9), there

exist a constant b(Ao, uo) > 0, independent of h, and a unique C2 function [uo(Xo) - E0, uo(Xo) +
0

C0] a -Y- (Oh(Y), fth(Y)) E R x Sh such that

(8.18) Hh(-Q, A-h(1), fih((Y)) = (0,0), II(A(yf), lIhu(-y)) - (Ah(-Y), iih(.Y))Ily < b(,•o, Uo),

and the inequality

(8.19) IJh(-7) - A(y)) + Ilih(y) - Ithu(-y)IIli < C..Ih(y-, A(-y), fhu(Y))IlmH-,.

It is clear that (8.18) implies (8.3) and (8.4). To get (8.5), we observe that

(8.20) IIH-h(,y, A(y), Ithu(y))ll~xH-, = IIFh(F(A(-), u(y)) - F(A(y), fthu(Y)))IIH-,

<5 C23 JU('Y) - ItkU(Y)IIHi.-

Therefore, combining (8.19) and (8.20), we obtain (8.5) and complete the proof. 0

By the same way as in Section 7, we obtain the following propositions.

Corollary 8.5. Suppose that the assumptions of Theorem 8.4 hold. Then, there exists a

constant K1(Jo, uo) > 0 independent of h > 0 and Y E [uo(zo) - Eo, Uo(Zo) + Eo] such that

IA(-y) - Ah(yf)l + IIU(Y) - ih('f)IIwOI. <•, (AO, uo)h",

for any 0 < 77 < and y. 0

Theorem 8.6. Suppose that Assumption 7.1 holds for d > 2. Let 04o C Mo be a connected

compact subset with the following properties:

(1) DxF(A,u) # 0 for any (A,U) E M40 .

(2) There exist 0o E J such that D(A,,)H(-V, A, u) defined by (8.2) is an isomorphism for all

(A, u) E•Mo.

Then Mo is parametrized by 'y = u(zo). We assume without loss of generality that the

above xo is a nodal point of Sh for all sufficiently small h > 0.

Then there exists the corresponding finite element solution branch Mh C %,4 which is

parametrized by the same -y; that is, uh(yf)(zo) = -Y and Fh(Ah(-Y), uh('y)) = 0 for any -'.
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Moreover, we have

IA(-y) - Ah(-Y)l + llfh/U(-) - Uh('Y)l,~ _H K2hi+•,

IA(y) - Ah(Y)l + Iu(yf) - uh(Y)ll,, < K31JU(y) - fIhU(Y)IIH',

IA#y)- A()I + Ilu(yt) - uh(-y)IjWi.oo :5K~

Mh C I(F, S),

for all y = u(zo),(A(y),u(y)) E ._,(,•(y),Uh(y)) E Mh, and 7/ with 0 < 77 < H. Here,

K2, K 3 , K 4 are positive constants independent of h and y. 3

For the WO''-norm estimate, we have the following theorem as in Section 7.

Theorem 8.7. Suppose that the assumptions of Theorem 8.6 and (7.27) hold. Then, for

the corresponding finite element solution branch we have the following estimates.

IA('y) - Ah(-y)l + Illfhu(y) - uh(-y)lIwI.. K506",

IA(-y) - Ah(y-)l + Ilu(yf) - uh(yt)llw.," < K6llU(QY) - llhU(-Y)IjwI.,.,

JA(y-) - Ah(y-)l + I1u(-() - th((y)IIw,,,. < K7h",

for an -y = U(zo),(('PO),U(')) E MO, (4h(0), U,('Y)) E Mh, and 77 with 0 < Y7 < I - .. Here,P

K5 , K 6 , K7 are positive constants independent of h and -y. 0
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